

Kubernetes Gateway selection for Istio in Knative

Shared with Istio Community

Owner(s): howardjohn
Working Group: Networking

Status: WIP | In Review | Approved | Obsolete |
Delayed
Created: 04/01/2021
Approvers: Networking

Background

Istio Gateway's associate with workloads by a selector field, which selects pod labels. The

ports setting in the servers may vary depending on associated Services to handle targetPort.

For example, Istio's default installation sets up port 80 with target 8080. When a user configures

a Gateway, they should specify the port as 80; internally, Istiod translates this to a listener on

port 8080 in Envoy.

However, when there is no associated Service port, the Gateway port will be used directly.

Knative

The following shows an example of a fully Knative setup. This is used as an example of issues

with the current API.

apiVersion: v1

kind: Service

metadata:

 name: istio-ingressgateway

 namespace: istio-system

spec:

 ports:

 - name: http2

 port: 80

 targetPort: 8080

 selector:

 istio: ingressgateway

 type: LoadBalancer

apiVersion: v1

kind: Service

metadata:

 name: knative-local-gateway

 namespace: istio-system

spec:

 ports:

 - name: http2

 port: 80

 targetPort: 8081

 selector:

 istio: ingressgateway

apiVersion: networking.istio.io/v1beta1

kind: VirtualService

metadata:

apiVersion: networking.istio.io/v1beta1

kind: Gateway

metadata:

 name: knative-ingress-gateway

 namespace: knative-serving

spec:

 selector:

 istio: ingressgateway

 servers:

 - hosts:

 - '*'

 port:

 name: http

 number: 80

 protocol: HTTP

apiVersion: networking.istio.io/v1beta1

kind: Gateway

metadata:

 labels:

 name: knative-local-gateway

 namespace: knative-serving

spec:

 selector:

 istio: ingressgateway

 servers:

 - hosts:

 - '*'

 port:

 name: http

 name: hello-ingress

spec:

 gateways:

 - knative-serving/knative-ingress-gateway

 - knative-serving/knative-local-gateway

 hosts:

 - hello.default.example.com

 - hello.default

 - hello.default.svc

 - hello.default.svc.cluster.local

 http:

 - match:

 - authority:

 prefix: hello.default

 gateways:

 - knative-serving/knative-local-gateway

 route:

 - destination:

 host: hello-

00001.default.svc.cluster.local

 - match:

 - authority:

 prefix: hello.default.example.com

 gateways:

 - knative-serving/knative-ingress-gateway

 route:

 - destination:

 host: hello-

00001.default.svc.cluster.local

 number: 8081

 protocol: HTTP

This is problematic for a few reasons:

● We may associate port 80 with port 8080 or port 8081. This is a conflict resolved by

Service creation order, which is not a good state.

● Gateway port selection impacts other usages. The port in Gateway will be used as a

match in the vhost. So in the example above, there will be a vhost match on

hello.default.svc.cluster.local:8080. This is undesirable because the port is

likely hit over port 80 (note: we really shouldn't match port at all but we don't have a

great way to handle that today, see https://github.com/istio/istio/issues/25350).

Additionally, VirtualService has a match.port which associates with a Gateway's port.

This port confusion makes the API inconsistent and hard to reason about.

KGateway API

Currently, the Gateway API has no solid way to actually associate a KGateway with an in-

cluster proxy deployment. For our case, we need users to have some way to specify which set

of Envoy's should actually be configured by the KGateway

https://github.com/istio/istio/issues/25350

KGateway Status

Another issue to fulfill is the KGateway status. The API expects us to fill in a list of addresses.

Because we can have multiple Services associated with a single gateway deployment, this

becomes complex to implement and confusing for a user.

This same problem occurs with Ingress today. It is "solved" by explicitly declaring which Service

to look up the address for. All other Ingress controllers that I could find do the same. However,

this is not suitable for us.

Requirements

● Users should be able to expose multiple distinct Services over port 80 on the same

gateway deployment, if they map those to different targetPorts.

● Ports should be consistent in the API - either referring to the service port or targetPort in

all cases.

● Istio must implement the KGateway API, including the status fields

● KGateway must be able to select which envoy will handle the configuration

○ Selection must not use all-namespace selectors, which causes security and

usability concerns

Design

This design focuses only on changing the Kubernetes Gateway API/Implementation. No

changes to Istio APIs will be made. It attempts to kill 3 birds with one stone: implementing

KGateway status, implementing selectors for KGateway, and resolving port conflict issues.

KGateway will add a new field, gatewayService or equivalent. If this field cannot be added to

the API, it can be used as an annotation. With this, the user will declare what Service will handle

the KGateway. The configuration will then apply to all gateway pods selected by that Service.

The above Knative example would look like this:

https://gateway-api.sigs.k8s.io/spec/#networking.x-k8s.io/v1alpha1.GatewayStatus

apiVersion: networking.x-k8s.io/v1alpha1

kind: Gateway

metadata:

 name: knative-ingress-gateway

 namespace: istio-system

spec:

 gatewayClassName: istio

 gatewayService: "istio-ingressgateway"

 listeners:

 - port: 80

 protocol: HTTP

 routes:

 kind: HTTPRoute

apiVersion: networking.x-k8s.io/v1alpha1

kind: Gateway

metadata:

 name: knative-local-gateway

 namespace: istio-system

spec:

 gatewayClassName: istio

 # Reference the knative-local-gateway Service

explicitly

 gatewayService: "knative-local-gateway"

 listeners:

 - port: 80 # Port refers to Service port of the

knative-local-gateway Service

 protocol: HTTP

 routes:

 kind: HTTPRoute

apiVersion: networking.x-k8s.io/v1alpha1

kind: HTTPRoute

metadata:

 name: hello-ingress

 namespace: default

spec:

 gateways:

 allow: FromList

 gatewayRefs:

 - name: knative-ingress-gateway

 namespace: istio-system

 hostnames: ["hello.default.example.com"]

 rules:

 - forwardTo:

 - serviceName: hello-

00001.default.svc.cluster.local

 port: 80

apiVersion: networking.x-k8s.io/v1alpha1

kind: HTTPRoute

metadata:

 name: hello-ingress-local

 namespace: default

spec:

 gateways:

 allow: FromList

 gatewayRefs:

 - name: knative-local-gateway

 namespace: istio-system

 hostnames: ["hello.default.svc.cluster.local"]

 rules:

 - forwardTo:

 - serviceName: hello-

00001.default.svc.cluster.local

 port: 80

This has a few benefits:

● All parts of the API refer to the Service port

● We are able to unambiguously refer to multiple Services selecting the same pods

● KGateway status is clear - we know exactly which Service we need to look to fill in the

address section

Route names

One concern with this design is the route naming. EnvoyFilter API allows matching on route

name or port. In order to support this design, we will need to refactor the route naming to deal

with ambiguities of port names. In this process, we will keep compatibility with port matches

(that is, the port refers to the port in Gateway.servers), but not the name.

Service Service Port Target Port Old Name New Name Listener Name

a 80 8080 http.80 http.8080 0.0.0.0_8080

b 80 8080 http.80 http.8080 0.0.0.0_8080

c 81 8080 http.81 http.8080 0.0.0.0_8080

d 81 9090 http.81 http.9090 0.0.0.0_9090

Current behavior:

● A+B = `buildGatewayListeners: found 2 services on port 80`, which picks an arbitrary

targetPort (8080 in either case here)

● C+D = `buildGatewayListeners: found 2 services on port 80`, which picks an arbitrary

targetPort (could be 8080 or 9090 here)

● A+C = NACK, duplicate listener on 8080 created

● A+D = no conflict, all ports are distinct

Consensus:

● merged target port (a-c) is not safe, can accidentally expose things

○ But we need it for migration between services. we need explicit way to declare

these as the "same" service

● agreement on the new name, but if we have a way to indicate the "canonical name" or

"merge group", we should use that for the name

● We need to figure out how to declare merge as safe. Look into current behavior to

decide what we should do.

One thing to note is that the listener and name route name are now 1:1, which removes

potential conflicts between listeners and routes.

Internally, the EnvoyFilter route matching looks at the route name and checks if there is a port

match for the API. To support this, we will set up a mapping of targetPort to service ports. For

example:

{

 8080: [80, 81],

 9090: [81],

}

Which will result in EnvoyFilters matching:

● port 80: will match the http.8080 route, which corresponds to service a and b on port 80

and c on port 81.

● port 81: will match the http.8080 route, which corresponds to service a and b on port

80 and c on port 81, as well as the http.9090

This may seem confusing that we have mismatches of ports selected. However, this is

fundamentally how the routing works; when a request comes in to Envoy we only know the

target port; we do not know which Service it came through (if any), so we cannot do further

disambiguation.

Default Service

To support minimal Gateway configurations, a single default gateway service may be specified

by a label on the Service like gateway.istio.io/default-gateway: true. This is similar to

Default Ingress Class.

If there is a Gateway without any service specified, and there is a Service in the same

namespace with this label, that service will be selected. If there are multiple Services with this

label in the same namespace, we will choose the oldest one and emit a warning.

Namespace Isolation

Background

Istio's current API has issues with how references between API objects are managed. This can

lead to unexpected (intentional or accidental) interference between namespaces.

https://kubernetes.io/docs/concepts/services-networking/ingress/#default-ingress-class

Gateway and VirtualService have an acceptable handshake - VirtualService explicitly refers to a

Gateway by name and namespace. Gateways may choose to limit the VirtualServices that bind

to it by using the namespace/hostname format, although in practice this is not common.

The references to certificates and gateway deployments are much weaker. Gateway has a

cross-namespace label selector, so any Pod can make itself selected, regardless of

namespace. When this happens, the Secret reference is also implicitly changed, as it refers to

the namespace of the Pod that is selected.

Additionally, a gateway pod cannot restrict which Gateways can bind to it. This can be fixed by

the PILOT_SCOPE_GATEWAY_TO_NAMESPACE option, but it's onerous for users as it fully

centralizes listener level concerns (such as certificates, etc) to the gateway admin.

Among other concerns, this is preventing us from allowing certificates to be stored in

namespaces other than the gateway deployment namespace, which does not adhere to the

spec. See Auth for Istiod SDS for more information.

Design

Gateway's will only be able to select Service's in their own namespace.

This changes the permission model to look like this:

https://docs.google.com/document/d/1nwTh2g7FgdkC8suc3SHZ5le_4Rkm8YvLY8Cgah4cm-I/edit

Within a namespace, we do not need a "mutual handshake", as namespace is the trust

boundary. We have the following one-way references, with the other direction providing implicit

trust by the namespace:

● Gateway references Service (by name)

● Service references pod (by selector)

● Gateway references Secret (by name)

The only cross namespace references we have have a mutual handshake. Route and Gateway

both have controls to form mutual agreement on selection.

Additionally, routes may override Gateway's certificates. This must be enabled in the Gateway's

settings (per the existing spec). The route will explicitly reference a secret in its own

namespace, which it is allowed to do since it is within its own namespace.

Because we have end to end trust, we are able to use this configuration to give authorization for

Secret access. For example, in the config above, route-with-cert has declared that the ingress

Pod can access the cert2 Secret, which tells Istiod to authorize access to it. In the previous

mode, because we do not have end to end trust, we cannot ensure there is mutual agreement

throughout the entire API chain to provide this authorization.

The main concern with this is breaking use cases that intend to delegate control to application

namespaces, rather than having centralized control in the istio-system namespace. There

are a few use cases:

● Allow app namespace to dynamically control a port. This requires changes to the

Service anyways, so istio-system access is already required.

● Allow app namespaces to control arbitrary HTTP ports. This is not a secure default. With

the API changes, the gateway admin may choose to allow this with a match on

hostname: * and namespaces: All, or they could just as easily delegate specific

hostnames to specific namespaces.

● Allow app namespaces to control TLS settings. In the Istio API, all TLS is in Gateway.

However, the Kubernetes API allows route-level TLS overrides if allowed by the

Gateway (default is not allowed). This enables the Gateway owner to delegate full

control of TLS settings to some namespace. If desired, they could even allow this for

hostname: * and namespaces: All.

As seen above, all existing use cases for allowing Gateways in any namespace is satisfied with

the new API. This leads to a stronger isolation of responsibilities. The gateway operator

configures the gateway, including what ports are available and which namespaces can control

which domains. The application operator controls routing rules for their application, and which

gateway's these are exposed on.

Examples

apiVersion: networking.x-k8s.io/v1alpha1

kind: Gateway

metadata:

 name: gateway

 namespace: istio-system

spec:

 gatewayClassName: istio

 gatewayService: istio-ingressgateway

 listeners:

 # Set up TLS settings for app1, alow app1 namespace to bind routes

 - hostname: "app1.example.com"

 port: 443

 protocol: HTTPS

 routes:

 kind: HTTPRoute

 namespaces:

 from: Selector

 selector:

 kubernetes.io/metadata.name: app1

 tls:

 mode: Terminate

 certificateRef:

 name: some-other-cert # lives in istio-system namespace

 # Setup our app2, we allow app2 to configure TLS itself

 - hostname: "app2.example.com"

 port: 443

 protocol: HTTPS

 routes:

 kind: HTTPRoute

 namespaces:

 from: Selector

 selector:

 kubernetes.io/metadata.name: app1

 tls:

 mode: Terminate

 routeOverride:

 certificate: Allow

 # Setup our dev domain, anyone can bind routes here!

 - hostname: "*.dev.example.com"

 port: 443

 protocol: HTTPS

 routes:

 kind: HTTPRoute

 namespaces:

 from: All

 tls:

 mode: Terminate

 certificateRef:

 name: my-wildcard-cert-tls # lives in istio-system namespace

apiVersion: networking.x-k8s.io/v1alpha1

kind: HTTPRoute

metadata:

 name: http

 namespace: app1

spec:

 hostnames: ["app1.example.com"]

 rules:

 - forwardTo:

 - serviceName: httpbin

 port: 80

apiVersion: networking.x-k8s.io/v1alpha1

kind: HTTPRoute

metadata:

 name: http

 namespace: app2

spec:

 hostnames: ["app2.example.com"]

 tls:

 certificateRef:

 name: app2-cert # lives in app2 namespace

 rules:

 - forwardTo:

 - serviceName: httpbin

 port: 80

TODO:

● What if we have two services, both with servicePort:80, targetPort:8080. Do we merge or

reject?

● How exactly is this implemented internally?

● Do we support ServiceEntry? We probably should, we can just make gatewayService a

FQDN.

● Map out how this works in a non-k8s environment

